Использование микроорганизмов человеком. Где мы применяем бактерии и может ли человечество обойтись без них

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Применение микроорганизмов в медицине, сельском хозяйстве; преимущества пробиотиков

Родникова Инна

ВВЕДЕНИЕ

Люди выступали в роли биотехнологов тысячи лет: пекли хлеб, варили пиво, делали сыр, другие молочнокислые продукты, используя различные микроорганизмы и даже не подозревая об их существовании. Собственно сам термин "биотехнология" появился в нашем языке не так давно, вместо него употреблялись слова "промышленная микробиология", "техническая биохимия" и др. Вероятно, древнейшим биотехнологическим процессом было брожение. В пользу этого свидетельствует описание процесса приготовления пива, обнаруженное в 1981 г. при раскопках Вавилона на дощечке, которая датируется примерно 6-м тысячелетием до н. э. В 3-м тысячелетии до н. э. шумеры изготовляли до двух десятков видов пива. Не менее древними биотехнологическими процессами являются виноделие, хлебопечение и получение молочнокислых продуктов.

Из вышеизложенного мы видим, что уже довольно длительное время жизнедеятельность человека неразрывно связана с живыми микроорганизмами. И если столько лет люди успешно, хотя и безсознательно, « сотрудничали» с бактериями, логично будет задать вопрос - а для чего, собственно, нужно расширять свои познания в этой области? Ведь и так вроде бы всё отлично, мы умеем печь хлеб и варить пиво, готовить вино и кефир, чего ещё надо? Зачем нам Биотехнологии? Некоторые ответы можно найти в этом реферате.

МЕДИЦИНА И БАКТЕРИИ

На протяжении всей истории человечества (вплоть до начала двадцатого века) семьи имели много детей т.к. очень часто дети не доживали до зрелого возраста, они погибали от множества заболеваний, даже от легко излечимого в наше время воспаления лёгких, что уж говорить о таких тяжёлых болезнях, как холера, гангрена, чума. Все эти заболевания вызваны болезнетворными микроорганизмами и считались неизлечимыми, но, наконец, учёные медики поняли, что побороть «злые» бактерии под силу другим бактериям, или вытяжкой из их ферментов. Впервые это удалось заметить Александру Флемингу на примере элементарной плесени.

Оказалось, что некоторые виды бактерий прекрасно уживаются с плесенью, но стрептококки и стафилококки в присутствии плесени не развивались. Многочисленные прежде опыты с размножением вредоносных бактерий показали, что некоторые из них способны уничтожать других и не допускают их развития в общей среде. Это явление было названо „антибиозом" от греческого „анти" -- против и „биос" -- жизнь. Работая над нахождением действенного противомикробного средства, Флеминг об этом прекрасно знал. У него не было никаких сомнений, что на чашке с таинственной плесенью он встретился с явлением антибиоза. Он начал тщательно исследовать плесень. Спустя некоторое время ему удалось даже выделить из плесени противомикробное вещество. Поскольку плесень, с которой он имел дело, носила видовое латинское название Penicilium notatum полученное вещество он назвал пенициллином. Таким образом, в 1929 году, в лаборатории лондонской больницы св. Марии родился хорошо известный нам пенициллин.

Предварительные испытания вещества на подопытных животных показали, что даже при инъекции в кровь оно не приносит вреда, и одновременно в слабых растворах прекрасно подавляет стрептококки и стафилококки. Ассистент Флеминга, доктор Стюарт Греддок, заболевший гнойным воспалением так называемой гайморовой полости, был первым человеком, который решился принять вытяжку пенициллина. Ему ввели в полость небольшое количество вытяжки из плесени, и уже через три часа можно было убедиться, что состояние его здоровья значительно улучшилось.

Таким образом, было положено начало эпохи антибиотиков, которые спасли миллионы жизней, как в мирное время, так и во времена войны, когда раненые умирали не от тяжести ранения, а от заражений, связанных с ними. В дальнейшем велись разработки новых антибиотиков, на базе пенициллина, способов их получения для широкого применения.

БИОТЕХНОЛОГИИ И СЕЛЬСКОЕ ХОЗЯЙСТВО

Следствием прорыва в медицине, стал быстрый демографический подъём. Население резко увеличивалось, а значит, требовалось больше пищи, а в связи с ухудшением экологии из-за ядерных испытаний, развития промышленности, истощения гумуса обрабатываемой земли, появилось множество заболеваний растений и скота.

Сначала, люди лечили животных и растения антибиотиками и это приносило свои результаты. Рассмотрим эти результаты. Да, если обрабатывать овощи, фрукты, зелень и др. в период вегетации сильными фунгицидами, то это поможет подавить развитие некоторых болезнетворных микроорганизмов (не всех и не полностью), но, во-первых, это приводит к накоплению в плодах ядов и токсинов, а значит, снижаются полезные качества плода, во-вторых, вредные микробы быстро вырабатывают иммунитет к травящим их веществам и последующие обработки должны проводится всё более и более сильными антибиотиками.

То же явление наблюдается и в животном мире, и, к сожалению, у человека. К тому же, в организме теплокровных антибиотики вызывают ещё ряд негативных последствий, таких как дисбактериоз, деформации плода у беременных, и др.

Как же быть? Сама природа даёт ответ на этот вопрос! И этот ответ - ПРОБИОТИКИ!

В ведущий институтах биотехнологий и генной инженерии давно занимаются выводом новых и селекцией известных микроорганизмов, которые обладают удивительной жизнестойкостью и способностью «побеждать» в борьбе с другими микробами. Эти элитные штаммы такие как «bacillus subtilis» и «Licheniformis» широко применяются для лечения людей, животных, растений невероятно эффективно и совершенно безопасно. Как такое возможно? А вот как: в организме людей и животных обязательно содержится множество необходимых бактерий. Они участвуют в процессах пищеварения, образования ферментов и составляют почти 70% иммунной системы человека. Если по какой-либо причине (приём антибиотиков, неправильное питание) у человека нарушен бактериальный баланс, то он оказывается незащищённым от новых вредоносных микробов и в 95% случаев заболеет снова. То же относится и к животным. А элитные штаммы, попадая в организм, начинают активно размножаться и уничтожать патогенную флору, т.к. уже говорилось выше, они обладают большей жизнеспособностью. Таким образом, с помощью штаммов элитных микроорганизмов, можно поддерживать макро организм в здоровье без антибиотиков и в гармонии с природой, т. к. сами по себе, находясь в организме, данные штаммы приносят только пользу и никакого вреда.

Они лучше, чем антибиотики ещё и потому, что:

ответ микромира на введение в деловую практику суперантибиотиков очевиден и следует из уже имеющегося в распоряжении ученых экспериментального материала - рождение супермикроба.

Микробы удивительно совершенные саморазвивающиеся и самообучающиеся биологические машины, способные запоминать в генетической памяти созданные ими механизмы защиты от губительного для них воздействия антибиотиков и передавать информацию потомкам.

Бактерии представляют собой своего рода «биореактор», в котором производятся ферменты, аминокислоты, витамины и бактериоцины, которые также как и антибиотики нейтрализуют болезнетворные микроорганизмы. Однако при этом не возникает ни привыкания к ним, ни побочных действий, типичных при применении химических антибиотиков. Наоборот, они способны, очистить стенки кишечника, повысить их проницаемость для необходимых питательных веществ, восстановить биологический баланс кишечной микрофлоры и стимулировать всю иммунную систему

Ученые воспользовались естественным для природы путем поддержания здоровья макро организма, а именно - из природной среды выделили бактерии - сапрофиты, обладающие свойством подавлять рост и развитие патогенной микрофлоры, в том числе и в желудочно-кишечном тракте теплокровных.

Миллионы лет эволюции живого на планете создали столь замечательные и совершенные механизмы подавления патогенной микрофлоры непатогенной, что сомневаться в успехе такого подхода не приходится. Непатогенная микрофлора в конкурентной борьбе побеждает в бесспорном большинстве случаев и, если бы это было не так - нас с вами не было бы сегодня на нашей планете.

На основании вышеизложенного, учёные, производящие удобрения и фунгициды для применения в сельском хозяйстве, тоже постарались перейти с химического на биологический взгляд. И результаты не замедлили себя проявить! Выяснилось, что те же самые bacillus subtilis успешно борются аж с семьюдесятью разновидностей патогенных представителей, вызывающих такие заболевания садово-огородных культур, как бактериальный рак, фузариозное увядание, корневая и прикорневая гниль и др., ранее считавшиеся неизлечимыми болезнями растений, с которыми не мог справиться НИ ОДИН ФУНГИЦИД! Кроме того, эти бактерии оказывают явно положительное влияние на вегетацию растения: сокращается срок налива и созревания плодов, увеличиваются полезные качества плодов, снижается содержание в них нитратов и др. токсичных веществ, а главное - значительно уменьшается потребность в минеральных удобрениях!

Препараты, содержащие штаммы элитных бактерий, уже занимают первые места на российских и международных выставках, они завоёвывают медали за эффективность и экологичность. Уже начали их активное использование мелкие и крупные сельхозпроизводители, а фунгициды и антибиотики постепенно уходят в прошлое.

Подукция компании «Био-Бан» это препараты «Флора-С» и «Фитоп-Флора-С» предлагает сухие торфо-гуминовые удобрения, содержащие концентрированные гуминовые кислоты (а насыщенный гумус - залог отличного урожая) и штамм бактерий «bacillus subtilis» для борьбы с болезнями. Благодаря этим препаратам, можно в короткие сроки восстановить истощённую землю, увеличить урожайность земли, защитить свой урожай от болезней, а главное, возможно получать отличные урожаи в зонах рискового земледелия!

Я считаю, приведённых аргументов достаточно, что бы оценить преимущества пробиотиков и понять, почему же учёные утверждают, что двадцатый век - век антибиотиков, а двадцать первый - век пробиотиков!

Подобные документы

    Понятие и значение селекции как науки о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. Оценка роли и значения микроорганизмов в биосфере, и особенности их использования. Формы молочнокислых бактерий.

    презентация , добавлен 17.03.2015

    контрольная работа , добавлен 12.05.2009

    Оснвные способы получения генетически модифицированных растений и животных. Трансгенные микроорганизмы в медицине, химической промышленности, сельском хозяйстве. Неблагоприятные эффекты генно-инженерных организмов: токсичность, аллергия, онкология.

    курсовая работа , добавлен 11.11.2014

    Отличия животных от растений. Особенности отбора животных для селекции. Что такое гибридизация, ее классификация. Современные разновидности селекции животных. Сферы использования микроорганизмов, их полезные свойства, методы и особенности селекции.

    презентация , добавлен 26.05.2010

    Изучение предмета, основных задач и истории развития медицинской микробиологии. Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.

    лекция , добавлен 12.10.2013

    Пробиотики как непатогенные для человека бактерии, обладающие антагонистической активностью в отношении патогенных микроорганизмов. Знакомство с особенностями пробиотических лактобацилл. Анализ кисломолочных продуктов с пробиотическими свойствами.

    реферат , добавлен 17.04.2017

    Гипотезы о зарождении жизни на Земле. Изучение биохимической деятельности микроорганизмов, их роли в природе, жизни человека и животных в работах Л. Пастера. Генетические исследования бактерий и вирусов, их фенотипическая и генотипическая изменчивость.

    реферат , добавлен 26.12.2013

    Влияние пробиотиков на здоровье человека. Иммуностимулирующие, антимутагеные свойства пропионовокислых бактерий. Влияние йода на биохимические свойства бактерий-пробиотиков. Качественная характеристика йодированных препаратов, биохимические показатели.

    статья , добавлен 24.08.2013

    Производство продуктов микробного синтеза первой и второй фазы, аминокислот, органических кислот, витаминов. Крупномасштабное производство антибиотиков. Производство спиртов и полиолов. Основные типы биопроцессов. Метаболическая инженерия растений.

Благодаря большому разнообразию синтезируемых ферментов микроорганизмы могут выполнять многие химические процессы более эффективно и экономично, чем если бы эти процессы проводились химическими методами. Изучение биохимической деятельности микроорганизмов позволило подобрать условия для максимальной активности их как продуцентов различных полезных ферментов - возбудителей нужных химических реакций и процессов. Микроорганизмы все шире применяются в различных отраслях химической и пищевой промышленности, сельском хозяйстве, медицине.

В нашей стране создана и успешно развивается новая отрасль промышленности - микробиологическая, все производства которой базируются на деятельности микроорганизмов.

Микроорганизмы, с помощью которых производят пищевые продукты, называют культурными. Их получают из чистых культур, которые выделяют из отдельных клеток. Последние хранят в музейных коллекциях и снабжают ими различные производства.

В результате осуществляемых культурными микроорганизмами химических реакций растительное или животное сырье превращается в пищевые продукты. С помощью микроорганизмов получают многие жизненно важные продукты питания, и хотя изготовление их знакомо человеку с древних времен, роль в нем микроорганизмов открыта сравнительно недавно.

Хлебопекарное производство.

Хлебопечение основано на деятельности дрожжей и молочнокислых бактерий, развивающихся в тесте. Совместное действие этих микроорганизмов приводит к сбраживанию сахаров муки. Дрожжи вызывают спиртовое брожение, молочнокислые бактерии - молочнокислое. Образующиеся при этом молочная и другие кислоты подкисляют тесто, поддерживая оптимальный для жизнедеятельности дрожжей уровень рН. Углекислый газ разрыхляет тесто и ускоряет его созревание.

Применение культурных микроорганизмов в виде прессованных хлебопекарных дрожжей, сушеных или жидких заквасок улучшает вкус и аромат хлеба.

Производство сыра.

Сыроделие основано на деятельности многих видов микроорганизмов: молочнокислые (термофильный стрептококк), пропионовокислые бактерии и др. Под действием молочнокислых бактерий происходит накопление молочной кислоты и сквашивание молока, под действием других полезных микроорганизмов созревает сыр. Участвуют в этом процессе также некоторые плесневые грибы. Сычужный фермент и молочнокислые бактерии производят глубокое расщепление белков, сахара и жира. Различные бактерии вызывают накопление в острых сырах летучих кислот, придающих им специфический аромат.

Получение кисломолочных продуктов.

Творог, сметану, масло, ацидофилин, простоквашу приготовляют на чистых Культурах с применением различных заквасок. Молоко предварительно пастеризуют. Для производства творога и сметаны применяют мезофильные молочнокислые бактерии; ряженки, варенца и подобных продуктов - термофильные стрептококки и болгарскую палочку; ацидофилина - кислотовыносливые молочнокислые бактерии; кефира - многокомпонентные закваски, состоящие из дрожжей, молочнокислых и часто уксуснокислых бактерий. Для изготовления кислосливочного масла в пастеризованные сливки вносят закваску молочнокислых бактерий и выдерживают до требуемой кислотности.

Пивоваренное, спиртовое, ликеро-водочное и винодельческое производства.

Вино, пиво, квас, водку и другие напитки приготовляют с применением дрожжей, вызывающих спиртовое брожение сахарсодержащих жидкостей. В результате брожения жидкости (сусла, бражки, сока и т. п.) образуется алкоголь, СО 2 и незначительные количества побочных продуктов. Подсобную роль выполняют молочнокислые бактерии: они подкисляют среду и облегчают деятельность дрожжей (например, при производстве кваса). В производстве спирта и пива для осахаривания заторов применяют также ферментные препараты грибного и бактериального происхождения.

Квашение и соление.

Сущность этого способа консервирования состоит в создании условий для преимущественного развития одних микроорганизмов - молочнокислых бактерий и подавления развития других - гнилостных бактерий. Заквашивают капусту, огурцы, помидоры, яблоки, арбузы. Применяют этот способ также при закладывании на длительное хранение корма для скота - заквашивается зеленая масса из трав, растительных остатков и др. Этот процесс носит название силосования кормов.

Получение органических кислот.

Уксусную, молочную и лимонную кислоты производят также с помощью микроорганизмов. Молочную кислоту получают способом брожения из сахарсодержащего сырья - патоки, крахмала, молочной сыворотки и др.

Молочнокислые бактерии выращивают на средах, содержащих до 15 % сахара. Выход молочной кислоты достигает 60-70 % массы содержащегося в заторе сахара.

Промышленное получение уксуса для пищевых целей основано на уксуснокислом брожении. Уксуснокислые бактерии в специальных чанах на буковых стружках окисляют поступающую питательную среду - уксусно-спиртовой раствор - до уксусной кислоты.

Лимонную кислоту раньше получали из плодов цитрусовых. В настоящее время ее также получают путем брожения. Возбудителем брожения является гриб Аспергиллус нигер, основное сырье - черная патока. Брожение происходит в растворе с содержанием 15 % сахара в аэробных условиях при температуре около 30 °С. Лимонная кислота используется в кондитерской промышленности, производстве безалкогольных напитков, сиропов, кулинарии и медицине.

Статья на конкурс «био/мол/текст»: Существуют ли лекарственные средства, не вызывающие побочных эффектов и осложнений, высокоэффективные и безопасные? Ближе всего к этим идеальным характеристикам подобрались пробиотические препараты (из живых микроорганизмов - симбионтов человека) и бактериофаги (вирусы бактерий). При введении в организм человека они вступают в борьбу за существование с возбудителями инфекционных заболеваний или, в случае бактериофагов, по-партизански разлагают их изнутри. Пробиотики и фаги с разной специфичностью влияют на патогенные бактерии, все процессы развиваются в пределах микробиоценоза определенной области человеческого тела и направлены на сохранение среды обитания, иначе говоря, на подержание гомеостаза. Пробиотики и фаги обычно применяют по отдельности, но перспективным может оказаться их совместное использование.

Обратите внимание!

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни ». Спонсором приза зрительских симпатий выступила фирма Helicon .

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science .

Клин клином выбивают.

Народная мудрость

Биотехнология - медицине

В современной медицинской практике используется большое количество средств, получаемых благодаря жизнедеятельности микроорганизмов. Сюда относятся витамины, ферменты, генно-инженерные гормоны и интерфероны, заменители крови и, конечно же, антибиотики. Собственно, даже медицинский спирт - этот универсальный антисептик, народный анальгетик и антидепрессант - является продуктом бродильного метаболизма дрожжевых грибков. Традиционные и новые высокоэффективные, различные по структуре и механизму действия природные и химически модифицированные лекарственные препараты, в создании которых участвовали микроорганизмы, применяются для лечения различных заболеваний.

Когда лекарство опаснее болезни

В практике применения лекарственных средств врачу приходится встречаться с так называемыми побочными явлениями, которые могут развиваться наряду с основным действием лекарства и ограничивать возможности его применения. Побочные реакции особенно часто возникают в случаях применения лекарств, обладающих многосторонним фармакологическим эффектом (вспомним тот же этиловый спирт), тогда как цель лечения достигается благодаря использованию лишь некоторых сторон фармакодинамики данного лекарства.

Особенного внимания заслуживают в этом смысле антибиотики, поскольку они являются препаратами выбора при лечении большинства инфекционных заболеваний, а назначению антибиотиков далеко не всегда предшествует проведение необходимых микробиологических исследований. Нередки случаи нерационального применения антибиотиков широкого спектра действия, нарушения пациентами схем приема препаратов, а то и вовсе бесконтрольного самолечения. И даже при правильном использовании антибактериальное действие антибиотиков распространяется не только на патогенную, но и на нормальную микробную флору организма. Под действием антибиотиков гибнут бифидобактерии , лактобациллы , симбиотические штаммы кишечной палочки и другие полезные микробы. Освободившиеся экологические ниши тут же заселяют условно-патогенные бактерии и грибки (как правило, обладающие резистентностью к антибиотикам), которые до этого присутствовали на коже и в нестерильных полостях организма в незначительном количестве - их размножение сдерживалось нормальной микрофлорой. Антибиотикотерапия, например, может способствовать превращению мирных сапрофитных дрожжеподобных грибков Candida albicans (рис. 1), обитающих на слизистых оболочках полости рта, трахеи и кишечника, в бурно размножающиеся микроорганизмы, вызывающие ряд местных и общих поражений.

Рисунок 1. Дрожжеподобные грибки Candida albicans и последствия их активного размножения. а - Клетки Candida albicans под электронным микроскопом. б - Проявления кандидоза. Рисунки с сайтов velvet.by и www.medical-enc.ru .

В основе других побочных эффектов могут лежать индивидуальные особенности взаимодействия организма с антибиотиком: непереносимость препарата может иметь аллергическую или псевдоаллергическую природу, быть следствием ферментопатий или попадать в загадочную категорию идиосинкразий (до выяснения механизма непереносимости).

Пробиотики вместо антибиотиков?

В настоящее время перед медицинской наукой и органами охраны здоровья всего мира стоит ответственная задача - создание эффективных антибактериальных препаратов, вызывающих как можно менее выраженные побочные реакции.

Одним из возможных решений проблемы является разработка и широкое фармакотерапевтическое использование препаратов на основе живых культур представителей нормальной микрофлоры (пробиотиков ) для коррекции микробиоценозов человека и для лечения патологических состояний. Применение бактериальных препаратов основано на понимании роли нормальной микрофлоры организма в процессах, обеспечивающих неспецифическую резистентность к инфекциям, в формировании иммунного ответа, а также на установлении антагонистической роли нормофлоры и ее участия в регуляции метаболических процессов .

Основоположником теории пробиотиков считают И.И. Мечникова . Он полагал, что сохранение здоровья человека и продление молодости во многом зависит от обитающих в кишечнике молочнокислых бактерий, способных подавлять процессы гниения и образования токсичных продуктов. Еще в 1903 году Мечников предложил практическое использование микробных культур-антагонистов для борьбы с болезнетворными бактериями.

По некоторым данным, термин «пробиотики» был введен Вернером Коллатом в 1953 году, затем его неоднократно и по-разному толковали как ученые, так и регулирующие организации. Коллат назвал пробиотиками вещества, необходимые для развития здорового организма, своего рода «промоторы жизни» - в противоположность антибиотикам. С концовкой этого утверждения соглашались также Лилли и Стилвелл, которым часто приписывают изобретение термина, однако они уточняли, что пробиотики представляют собой вещества, вырабатываемые одними микроорганизмами и стимулирующие рост других. Подавляющее же большинство определений вращалось вокруг принятия жизнеспособных микробов с целью модуляции кишечной микрофлоры. Согласно консенсусной трактовке экспертного совета ВОЗ и ФАО , пробиотики представляют собой живые микроорганизмы, которые при принятии в достаточном количестве приносят пользу здоровью . Существенный вклад в развитие современной концепции пробиотиков внес известный биохимик, специалист по питанию животных Марсель Ванбелле . Т.П. Лайонс и Р.Дж. Фэллон в 1992 году назвали наше время «наступающей эпохой пробиотиков» (и не ошиблись, судя по невероятному росту их продаж - Ред. ) .

По сравнению с традиционными антибактериальными препаратами пробиотики имеют ряд преимуществ: безвредность (однако не при всех диагнозах и не для всех пациентов - Ред. ), отсутствие побочных реакций, аллергизации и отрицательного воздействия на нормальную микрофлору. В то же время авторы ряда исследований связывают прием этих биопрепаратов с выраженным клиническим эффектом при лечении (долечивании) острых кишечных инфекций. Важной особенностью пробиотиков, по некоторым данным, является их способность модулировать иммунные реакции, оказывать в ряде случаев противоаллергическое действие, регулировать пищеварение.

В настоящее время в медицине широко используют ряд подобных бактериальных препаратов. Одни из них содержат бактерии, постоянно обитающие в организме человека («Лактобактерин », «Бифидумбактерин », «Колибактерин », «Бификол »), другие состоят из микроорганизмов, не являющихся «резидентами» человеческого тела, но способных на определенное время колонизировать слизистые оболочки или раневые поверхности, создавая на них защитную биопленку (рис. 2) и вырабатывая вещества, губительные для патогенных бактерий. К таким препаратам относятся, в частности, «Биоспорин » на основе сапрофитной бактерии Bacillus subtilis и «А-бактерин», состоящий из живых клеток зеленящего аэрококка - Aerococcus viridans .

Полезный микроб - аэрококк

Некоторых аэрококков (рис. 3) относят к условно-патогенным микробам, поскольку они способны вызывать заболевания у животных (например, гаффкемию у омаров) и людей с иммунодефицитами. Аэрококки часто обнаруживаются в воздухе больничных палат и на предметах медицинского назначения, выделяются от больных со стрептококковыми и стафилококковыми инфекциями и к тому же имеют определенное морфологическое сходство с этими опасными бактериями.

Рисунок 3. Клетки и колонии аэрококков. а - Бактерии под обычным световым микроскопом. б - Бактерии под электронным микроскопом. Видны округлые клетки, расположенные парами и тетрадами. в - Колонии аэрококков на питательной среде с добавлением крови. Зеленое окрашивание вокруг колоний - результат частичного разрушения гемоглобина. Фото (а) с сайта codeofconduc.com , (б) и (в) - сделаны авторами статьи.

Рисунок 4. Подавление аэрококками роста патогенных бактерий. Зоны значительной задержки роста зарегистрированы при культивировании вибрионов, стафилококков, дифтерийной палочки, провиденции. Синегнойная палочка (Pseudomonas aeruginosa ) к антагонистическому действию аэрококков устойчива. Фото авторов статьи.

Но коллективу кафедры микробиологии Днепропетровской медицинской академии удалось выявить среди аэрококков штамм не просто безвредный для человека, но и проявляющий выраженную антагонистическую активность в отношении широкого спектра возбудителей инфекционных болезней. Так был разработан и внедрен препарат, не имеющий аналогов в мировой практике, - пробиотик «А-бактерин » для наружного и перорального применения, который не уступает по своему воздействию на микрофлору человека дорогостоящим препаратам антибиотического направления (рис. 4).

Антагонистические свойства аэрококков связаны с продукцией перекиси водорода (вещества, широко применяемого в медицине в качестве антисептика) - стабильным признаком производственного штамма А. viridans , из которого готовится «А-бактерин». Другим бактерицидным веществом, продуктом метаболизма аэрококков, является супероксидный радикал (рис. 5), образуемый этими бактериями при окислении молочной кислоты. Причем способность аэрококков окислять молочную кислоту очень важна в случае применения препарата в стоматологии, так как одной из причин кариеса является молочная кислота, образуемая стрептококками.

Рисунок 5. Бактерицидные вещества, образуемые аэрококками: перекись водорода (а ) и супероксидный радикал (б ) . Рисунок с сайта tofeelwell.ru .

В культуральной жидкости аэрококков был выявлен низкомолекулярный кислотоустойчивый и термостабильный пептид виридоцин , обладающий широким спектром антагонистической активности в отношении тех микроорганизмов, которые чаще всего вызывают госпитальные инфекции и участвуют в формировании физиологического и патологического микробиоценоза кишечника человека . Кроме того, А. viridans продуцирует во внешнюю среду пептид аэроцин *, способный убивать дрожжеподобные грибки. Использование «А-бактерина» с йодидом калия и этонием эффективно при урогенитальных кандидозах, так как обеспечивает направленное повреждение мембран кандид . Тот же эффект достигается в случае применения препарата как средства профилактики кандидозов, возникающих, например, вследствие угнетения иммунитета при ВИЧ-инфекции .

* - Наряду с продукцией перекиси водорода (за счет НАД-независимой лактатдегидрогеназы), а в присутствии иодида калия и образованием гипойодида (за счет глутатионпероксидазы) с более выраженным, чем у пероксида водорода, бактерицидным действием, аэрококки располагают и неоксидными компонентами антагонистической активности. Они образуют низкомолекулярный термостабильный пептид аэроцин, относящийся к классу микроцинов, активный в отношении протеев, стафилококков, эшерихий и сальмонелл. Аэроцин был выделен из культуральной жидкости методами высаливания, электродиализа и бумажной хроматографии, после чего был установлен его аминокислотный состав и показана терапевтическая эффективность при экспериментальной сальмонеллезной инфекции у мышей . Аэрококкам также свойственна адгезия к эпителиальным и некоторым другим клеткам, то есть противодействие патогенным бактериям идет в том числе на уровне биопленок и колонизационной резистентности.

Кроме способности подавлять размножение патогенных бактерий, «А-бактерин» способствует регенерации поврежденной ткани, проявляет адъювантное действие, стимулирует фагоцитоз и может быть рекомендован больным, сенсибилизированным к антибиотикам и химиотерапевтическим средствам. Сегодня «А-бактерин» успешно применяется для лечения ожоговых и хирургических ран, для профилактики и лечения диареи, а также в стоматологической, урологической и гинекологической практике. Перорально «А-бактерин» используется для коррекции микрофлоры кишечника, профилактики и лечения кишечных инфекций, коррекции отдельных биохимических показателей (холестеринового профиля и уровня молочной кислоты) и активации иммунитета . Другие пробиотики тоже широко применяются для лечения и профилактики кишечных инфекций, особенно у детей раннего возраста, находящихся на искусственном вскармливании . Пользуются популярностью и пищевые продукты, содержащие живые пробиотические культуры.

Лечебные вирусы

При лечении инфекций важно создать высокую концентрацию антимикробного препарата именно в месте локализации возбудителя. Применяя антибиотики в виде таблеток или инъекций, добиться этого довольно трудно. Но в случае фаготерапии достаточно, если в инфекционный очаг доберутся хотя бы одиночные бактериофаги. Обнаружив патогенные бактерии и проникнув в них, фаги начинают очень быстро размножаться. С каждым циклом размножения, который длится около получаса, количество фагов возрастает в десятки, а то и сотни раз. После разрушения всех клеток возбудителя фаги более не способны размножаться и, благодаря своим мелким размерам, беспрепятственно выводятся из организма вместе с другими продуктами распада.

Пробиотики и фаги вместе

Бактериофаги хорошо зарекомендовали себя в профилактике и лечении кишечных инфекций и гнойно-воспалительных процессов. Возбудители этих заболеваний часто приобретают устойчивость к антибиотикам, но остаются чувствительными к фагам . В последнее время ученых заинтересовала перспектива совместного использования бактериофагов и пробиотиков. Предполагается, что при назначении такого комплексного препарата сначала фаг уничтожает патогенные бактерии, а потом освободившуюся экологическую нишу заселяют полезные микроорганизмы, формируя стабильный микробиоценоз с высокими защитными свойствами. Такой подход уже был опробован на сельскохозяйственных животных . Вероятно, он войдет и в медицинскую практику.

Возможно и более тесное взаимодействие в системе «бактериофаг + пробиотик». Известно, что бактерии - представители нормальной микрофлоры человека - способны адсорбировать на своей поверхности различные вирусы, не позволяя им проникнуть в клетки человека . Оказалось, что таким же образом могут адсорбироваться и бактериофаги: они не способны внедриться в клетку устойчивой к ним бактерии, но используют ее как «транспортное средство» для перемещения в организме человека. Такое явление получило название транслокации бактериофагов .

Внутренняя среда организма, его ткани и кровь считаются стерильными. На самом деле через микроскопические повреждения слизистых оболочек бактерии-симбионты периодически проникают в кровяное русло (рис. 7), хотя и быстро там уничтожаются клетками иммунной системы и бактерицидными веществами . При наличии инфекционного очага барьерные свойства окружающих тканей часто нарушены, их проницаемость возрастает. Это повышает вероятность проникновения туда циркулирующих пробиотических бактерий вместе с прикрепившимися к ним фагами . В частности, у людей с инфекциями мочевыводящих путей, принимающих «А-бактерин» перорально, аэрококки обнаруживались в моче, причем их количество было стабильно низким, что говорило именно о переносе аэрококков, а не об их размножении в этих органах . Аэрококки и наиболее распространенные возбудители урологических инфекций относятся к совершенно разным группам бактерий, а значит, чувствительны к разным бактериофагам. Это открывает интересные перспективы для создания комплексного препарата, например, на основе А. viridans и фагов, поражающих кишечные бактерии . Такие разработки ведутся на кафедре микробиологии Днепропетровской медицинской академии, однако они пока не вышли за стадию лабораторного исследования.

Статья написана при участии Юргель Л.Г. и Кременчуцкого Г.Н.

От редакции

Редакция «Биомолекулы» обращает внимание читателей на то, что авторы статей из номинации «Своя работа» делятся важными и интересными деталями своих исследований, приводят собственный взгляд на ситуацию в своей отрасли. Коллектив же «Биомолекулы» не считает, что вопрос о целесообразности применения пробиотиков уже решен.

Результаты исследований подобных веществ, какими бы потрясающими они ни были, должны подтверждаться соответствующим образом: препарат должен пройти необходимые фазы клинических испытаний , чтобы медицинское сообщество могло признать его безопасным и эффективным лекарственным средством , и лишь после этого рекомендовать пациентам. Естественно, речь идет об испытаниях по международным нормам, а не так, как это иногда у нас бывает - на 12 пациентах сельского лазарета, заявивших, что им ну-просто-жуть-как-помогло. Неплохим ориентиром для врачей и пациентов было бы одобрение каких-либо пробиотических препаратов, например, американским FDA , но увы...

Пока же принимаемые внутрь пробиотики следует рассматривать не как лекарства, а как пищевые добавки . Причем заявленные производителем свойства препарата нельзя переносить на другие пробиотики: критичны штамм (не род и даже не вид) и количество колониеобразующих единиц . А еще нужно иметь в виду, что на такую продукцию влияет множество факторов, связанных с производством, условиями и сроками хранения, употреблением и пищеварением.

Крупнейшие контролирующие питание и лечение организации мира считают : пока не достаточно доказательств для утверждения, что пробиотики положительно влияют на здоровье (тем более всех поголовно, вне зависимости от исходного состояния этого самого здоровья). И не то чтобы контролеры были убеждены в неэффективности этих препаратов - просто, как правило, в проведенных медисследованиях они не усматривают достоверной причинно-следственной связи приема пробиотиков с позитивными изменениями. А еще стоит помнить о тех исследованиях, где какой-то пробиотик оказывался неэффективным или даже влиял отрицательно.

Так или иначе, потенциал у пробиотического направления есть - как минимум в профилактике и лечении разных энтеритов (если речь идет о пероральном приеме). Просто не всё так просто. Не так просто, как хотелось бы производителю, врачу и пациенту. Наверное, пробиотики на полках наших магазинов и аптек просто «родились немного недоношенными». Так что ждем от ученых-разработчиков и производителей убойных доказательств. А авторам статьи пожелаем успехов на этом нелегком поприще и, конечно, в поиске новых интересных свойств микроорганизмов.

Литература

  1. Кременчуцкий Г.Н., Рыженко С.А., Волянский А.Ю., Молчанов Р.Н., Чуйко В.И. А-бактерин в лечении и профилактике гнойно-воспалительных процессов. Днепропетровск: Пороги, 2000. - 150 с.;
  2. Vanbelle M., Teller E., Focant M. (1990). Probiotics in animal nutrition: a review . Arch. Tierernahr. 40 (7), 543–567;
  3. Риженко С.А., Кременчуцький Г.М., Бредихіна М.О. (2008). Вплив рідкого пробіотику «А-бактерину» на мікробіоту кишечника . Медичні перспективи . 2 , 47–50;
  4. Акилов О.А. (2000). Современные методы лечения кандидоза . Сайт «Русский Медицинский Сервер» .;
  5. Edwards J.E. Jr., Bodey G.P., Bowden R.A., Büchner T., de Pauw B.E., Filler S.G. et al. (1997). International conference for development of consensus on the management and prevention of severe candidal infections . Clin. lnfect. Dis. 25 , 43–59;
  6. Antoniskis D., Larsen R.A., Akil B., Rarick M.U., Leedom J.M. (1990). Seronegative disseminated Coccidioidomycosis in patients with HIV infection . AIDS . 4 , 691–693;
  7. Jones J.L., Fleming P.L., Ciesielski C.A., Hu D.J., Kaplan J.E., Ward J.W. (1995). Coccidioidomycosis among persons with AIDS in the United States . J. Infect. Dis. 171 , 961–966;
  8. Степанский Д.А., Рыженко С.А., Кременчуцкий Г.Н., Шарун О.В., Юргель Л.Г., Крушинская Т.Ю., Кошевая И.П. (2012). Неоксидные компоненты антагонистической активности аэрококков (НКА) . Аннали Мечниковського інституту . 4 , 9–10;
  9. Ардатская М.Д. (2011). Пре- и пробиотики в коррекции микроэкологических нарушений кишечника . Фарматека . 12 , 62–68;
  10. Бехтерева М.К., Иванова В.В. (2014). Место бактериофагов в терапии инфекционных заболеваний желудочно-кишечного тракта . Педиатрия . 2 , 24–29;
  11. Григорьева Г.И., Гордеева И.В., Кульчицкая М.А., Аникина Т.А. (2006). Эффективное применение биологических препаратов (пробиотики и бактериофаги) при лечении коров с острым течением эндометрита . Ветеринарная патология . 1 , 52–56;
  12. Бондаренко В.М. (2013). Механизмы транслокации бактериальной аутофлоры в развитии эндогенной инфекции . Бюллетень оренбургского научного центра УРО РАН (электронный журнал) . 3 ;
  13. Кременчуцкий Г.Н., Рыженко С.А., Юргель Л.Г. (2008). Явление транслокации E.coli (Hem + , Str r) . Труды XVI Международной конференции «Новые информационные технологии в медицине, биологии, фармакологии, экологии» . 250–251;
  14. Кутовий А.Б., Василишин Р.Й., Мешалов В.Д., Кременчуцкий Г.Н. (2002). Ентерально органа транслокація бактерій і генералізація інфекційного процесу в експерименті. Вісник наукових досліджень . 2 , 121–123;
  15. Шарун А.В., Нікуліна О.О., Кременчуцький Г.М. (2005). Порівняльний аналіз біологічних властивостей аерококів, виділених із різних екологічних ніш організму людини . Медичні перспективи . 3 , 72–78;
  16. Зимин А.А., Васильева Е.А., Васильева Е.Л., Фишман К.С., Скобликов Н.Э., Кременчуцкий Г.Н., Мурашев А.Н. (2009). Биобезопасность в фаговой и пробиотической терапии: проблемы и решения . Вестник новых медицинских технологий . 1 , 200–202..

Микробиологические процессы широко применяют в различных отраслях народного хозяйства. В основе многих процессов лежат реакции обмена веществ, происходящих при росте и размножении некоторых микроорганизмов.

С помощью микроорганизмов производят кормовые белки, ферменты, витамины, аминокислоты, органические кислоты и т.д.

Основные группы микроорганизмов, используемых в отраслях пищевой промышленности, — бактерии, дрожжевые и плесневые грибы.

Бактерии. Используют в качестве возбудителей молочнокислого, уксуснокислого, маслянокислого, ацетонобутилового брожения.

Культурные молочнокислые бактерии используют при получении молочной кислоты, в хлебопечении, иногда в спиртовом производстве. Они превращают сахар в молочную кислоту по уравнению

C6H12O6 ® 2CH3 – CH – COOH + 75 кДж

В производстве ржаного хлеба участвуют истинные (гомоферментативные) и неистинные (гетероферментативные) молочнокислые бактерии. Гомоферментативные участвуют только в кислотообразовании, а гетероферментативные, наряду с молочной кислотой, образуют летучие кислоты (в основном уксусную), спирт и диоксид углерода.

В спиртовой промышленности молочнокислое брожение применяется для подкисления дрожжевого сусла. Дикие молочнокислые бактерии неблагоприятно влияют на технологические процессы бродильных производств, ухудшают качество готовой продукции. Образующаяся молочная кислота подавляет жизнедеятельность посторонних микроорганизмов.

Маслянокислое брожение, вызываемое маслянокислыми бактериями, используют для производства масляной кислоты, эфиры которой применяют в качестве ароматических веществ.

Маслянокислые бактерии превращают сахар в масляную кислоту по уравнению

C6H12O6 ® CH3CH2CH2COOH + 2CO2 + H2 + Q

Уксуснокислые бактерии используют для получения уксуса (раствора уксусной кислоты), т.к. они способны окислять этиловый спирт в уксусную кислоту по уравнению

C2H5OH + O2 ® CH3COOH + H2O +487 кДж

Уксуснокислое брожение является вредным для спиртового производства, т.к. приводит к снижению выхода спирта, а в пивоварении вызывает порчу пива.

Дрожжи. Применяются в качестве возбудителей брожения при получении спирта и пива, в виноделии, в производстве хлебного кваса, в хлебопечении.

Для пищевых производств имеют значение дрожжи – сахаромицеты, которые образуют споры, и несовершенные дрожжи – несахаромицеты (дрожжеподобные грибы), не образующие спор. Семейство сахаромицетов делится на несколько родов. Наиболее важное значение имеет род Saccharomyces (сахаромицеты). Род подразделяется на виды, а отдельные разновидности вида называют расами. В каждой отрасли применяют отдельные расы дрожжей. Различают дрожжи пылевидные и хлопьевидные. У пылевидных клетки изолированы друг от друга, а у хлопьевидных клетки склеиваются между собой, образуя хлопья, и быстро оседают.

Культурные дрожжи относятся к семейству сахаромицетов S. сerevisiae. Температурный оптимум для размножения дрожжей 25-30 0С, а минимальная температура около 2-3 0С. При 40 0С рост прекращается, дрожжи отмирают, при низких температурах размножение приостанавливается.

Различают дрожжи верхового и низового брожения.

Из культурных дрожжей к дрожжам низового брожения относят большинство винных и пивных дрожжей, а к дрожжам верхового брожения – спиртовые, хлебопекарные и некоторые расы пивных дрожжей.

Как известно, в процессе спиртового брожения из глюкозы образуется два основных продукта – этанол и диоксид углерода, а также промежуточные вторичные продукты: глицерин, янтарная, уксусная и пировиноградная кислоты, ацетальдегид, 2,3-бутиленгликоль, ацетоин, эфиры и сивушные масла (изоамиловый, изопропиловый, бутиловый и другие спирты).

Сбраживание отдельных сахаров происходит в определенной последовательности, обусловленной скоростью их диффузии в дрожжевую клетку. Быстрее всего сбраживаются дрожжами глюкоза и фруктоза. Сахароза, как таковая, исчезает (инвертируется) в среде еще в начале брожения под действием фермента дрожжей b — фруктофуранозидазы, с образованием глюкозы и фруктозы, которые легко используются клеткой. Когда в среде не остается глюкозы и фруктозы, дрожжи потребляют мальтозу.

Дрожжи обладают способностью сбраживать весьма высокие концентрации сахара – до 60 %, они выносят также высокие концентрации спирта – до 14-16 об. %.

В присутствии кислорода спиртовое брожение прекращается и дрожжи получают энергию за счет кислородного дыхания:

C6H12O6 + 6O2 ® 6CO2 + 6H2O + 2824 кДж

Так как процесс более энергетически богат, чем процесс брожения (118 кДж), то дрожжи тратят сахар значительно экономнее. Прекращение брожения под действием кислорода воздуха называют эффектом Пастера.

В спиртовом производстве применяют верховые дрожжи вида S. сerevisiae, которые обладают наибольшей энергией брожения, образуют максимум спирта и сбраживают моно- и дисахариды, а также часть декстринов.

В хлебопекарных дрожжах ценят быстроразмножающиеся расы, обладающие хорошей подъемной силой и стойкостью при хранении.

В пивоварении используют дрожжи низового брожения, приспособленные к сравнительно низким температурам. Они должны быть микробиологически чистыми, обладать способностью к хлопьеобразованию, быстро оседать на дно бродильного аппарата. Температура брожения 6-8 0С.

В виноделии ценят дрожжи, быстро размножающиеся, обладающие свойством подавлять другие виды дрожжей и микроорганизмы и придавать вину соответствующий букет. Дрожжи, применяемые в виноделии, относятся к виду S. vini, энергично сбраживают глюкозу, фруктозу, сахарозу и мальтозу. В виноделии почти все производственные культуры дрожжей выделены из молодых вин в различных местностях.

Зигомицеты – плесневые грибы, они играют большую роль в качестве продуцентов ферментов. Грибы рода Aspergillus продуцируют амилолитические, пектолитические и другие ферменты, которые используют в спиртовой промышленности вместо солода для осахаривания крахмала, в пивоварении при частичной замене солода несоложеным сырьем и т.д.

В производстве лимонной кислоты А. niger является возбудителем лимоннокислого брожения, превращая сахар в лимонную кислоту.

Микроорганизмы в пищевой промышленности играют двоякую роль. С одной стороны, это культурные микроорганизмы, с другой — в пищевые производства попадает инфекция, т.е. посторонние (дикие) микроорганизмы. Дикие микроорганизмы распространены в природе (на ягодах, плодах, в воздухе, воде, почве) и из окружающей среды попадают в производство.

Для соблюдения правильного санитарно-гигиенического режима на пищевых предприятиях эффективным способом уничтожения и подавления развития посторонних микроорганизмов является дезинфекция.

Читайте также:

II. ТРЕБОВАНИЯ ОХРАНЫ ТРУДА, ПРЕДЪЯВЛЯЕМЫЕ К ОРГАНИЗАЦИИ РАБОТ (ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ) ПО ДОБЫЧЕ И ПЕРЕРАБОТКЕ РЫБЫ И МОРЕПРОДУКТОВ
Thema: Informationstechnologien (Информационные технологии)
V. Конкуренция импорта с отечественным производством
Автоматизированное производство.
Активная часть основных производственных средств
Анализ использования производственного оборудования.
Анализ использования производственных мощностей.
Анализ основных экономических показателей деятельности производственных отраслей
АНАЛИЗ ПРОИЗВОДСТВЕННО-ЭКОНОМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ОРГАНИЗАЦИИ
Анализ производственных запасов Курского ОАО «Прибор»

Читайте также:

Значение бактерий в нашей жизни. Открытие пенициллина и развитие медицины. Результаты применения антибиотиков в растительном и животном мире. Что такое пробиотики, принцип их действия на организм людей и животных, растений, преимущества применения.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Применение микроорганизмов в медицине, сельском хозяйстве; преимущества пробиотиков

Родникова Инна

ВВЕДЕНИЕ

Люди выступали в роли биотехнологов тысячи лет: пекли хлеб, варили пиво, делали сыр, другие молочнокислые продукты, используя различные микроорганизмы и даже не подозревая об их существовании.

Собственно сам термин «биотехнология» появился в нашем языке не так давно, вместо него употреблялись слова «промышленная микробиология», «техническая биохимия» и др. Вероятно, древнейшим биотехнологическим процессом было брожение. В пользу этого свидетельствует описание процесса приготовления пива, обнаруженное в 1981 г.

при раскопках Вавилона на дощечке, которая датируется примерно 6-м тысячелетием до н. э. В 3-м тысячелетии до н. э. шумеры изготовляли до двух десятков видов пива. Не менее древними биотехнологическими процессами являются виноделие, хлебопечение и получение молочнокислых продуктов.

Из вышеизложенного мы видим, что уже довольно длительное время жизнедеятельность человека неразрывно связана с живыми микроорганизмами. И если столько лет люди успешно, хотя и безсознательно, « сотрудничали» с бактериями, логично будет задать вопрос — а для чего, собственно, нужно расширять свои познания в этой области?

Ведь и так вроде бы всё отлично, мы умеем печь хлеб и варить пиво, готовить вино и кефир, чего ещё надо? Зачем нам Биотехнологии? Некоторые ответы можно найти в этом реферате.

МЕДИЦИНА И БАКТЕРИИ

На протяжении всей истории человечества (вплоть до начала двадцатого века) семьи имели много детей т.к.

очень часто дети не доживали до зрелого возраста, они погибали от множества заболеваний, даже от легко излечимого в наше время воспаления лёгких, что уж говорить о таких тяжёлых болезнях, как холера, гангрена, чума. Все эти заболевания вызваны болезнетворными микроорганизмами и считались неизлечимыми, но, наконец, учёные медики поняли, что побороть «злые» бактерии под силу другим бактериям, или вытяжкой из их ферментов.

Впервые это удалось заметить Александру Флемингу на примере элементарной плесени.

Оказалось, что некоторые виды бактерий прекрасно уживаются с плесенью, но стрептококки и стафилококки в присутствии плесени не развивались.

Многочисленные прежде опыты с размножением вредоносных бактерий показали, что некоторые из них способны уничтожать других и не допускают их развития в общей среде. Это явление было названо „антибиозом» от греческого „анти» — против и „биос» — жизнь. Работая над нахождением действенного противомикробного средства, Флеминг об этом прекрасно знал. У него не было никаких сомнений, что на чашке с таинственной плесенью он встретился с явлением антибиоза. Он начал тщательно исследовать плесень.

Спустя некоторое время ему удалось даже выделить из плесени противомикробное вещество. Поскольку плесень, с которой он имел дело, носила видовое латинское название Penicilium notatum полученное вещество он назвал пенициллином.

Таким образом, в 1929 году, в лаборатории лондонской больницы св. Марии родился хорошо известный нам пенициллин.

Предварительные испытания вещества на подопытных животных показали, что даже при инъекции в кровь оно не приносит вреда, и одновременно в слабых растворах прекрасно подавляет стрептококки и стафилококки.

Роль микроорганизмов в технологии пищевых производств

Ассистент Флеминга, доктор Стюарт Греддок, заболевший гнойным воспалением так называемой гайморовой полости, был первым человеком, который решился принять вытяжку пенициллина.

Ему ввели в полость небольшое количество вытяжки из плесени, и уже через три часа можно было убедиться, что состояние его здоровья значительно улучшилось.

Таким образом, было положено начало эпохи антибиотиков, которые спасли миллионы жизней, как в мирное время, так и во времена войны, когда раненые умирали не от тяжести ранения, а от заражений, связанных с ними. В дальнейшем велись разработки новых антибиотиков, на базе пенициллина, способов их получения для широкого применения.

БИОТЕХНОЛОГИИ И СЕЛЬСКОЕ ХОЗЯЙСТВО

Следствием прорыва в медицине, стал быстрый демографический подъём.

Население резко увеличивалось, а значит, требовалось больше пищи, а в связи с ухудшением экологии из-за ядерных испытаний, развития промышленности, истощения гумуса обрабатываемой земли, появилось множество заболеваний растений и скота.

Сначала, люди лечили животных и растения антибиотиками и это приносило свои результаты.

Рассмотрим эти результаты. Да, если обрабатывать овощи, фрукты, зелень и др. в период вегетации сильными фунгицидами, то это поможет подавить развитие некоторых болезнетворных микроорганизмов (не всех и не полностью), но, во-первых, это приводит к накоплению в плодах ядов и токсинов, а значит, снижаются полезные качества плода, во-вторых, вредные микробы быстро вырабатывают иммунитет к травящим их веществам и последующие обработки должны проводится всё более и более сильными антибиотиками.

То же явление наблюдается и в животном мире, и, к сожалению, у человека.

К тому же, в организме теплокровных антибиотики вызывают ещё ряд негативных последствий, таких как дисбактериоз, деформации плода у беременных, и др.

Как же быть? Сама природа даёт ответ на этот вопрос! И этот ответ — ПРОБИОТИКИ!

В ведущий институтах биотехнологий и генной инженерии давно занимаются выводом новых и селекцией известных микроорганизмов, которые обладают удивительной жизнестойкостью и способностью «побеждать» в борьбе с другими микробами.

Эти элитные штаммы такие как «bacillus subtilis» и «Licheniformis» широко применяются для лечения людей, животных, растений невероятно эффективно и совершенно безопасно.

Как такое возможно? А вот как: в организме людей и животных обязательно содержится множество необходимых бактерий. Они участвуют в процессах пищеварения, образования ферментов и составляют почти 70% иммунной системы человека. Если по какой-либо причине (приём антибиотиков, неправильное питание) у человека нарушен бактериальный баланс, то он оказывается незащищённым от новых вредоносных микробов и в 95% случаев заболеет снова.

То же относится и к животным. А элитные штаммы, попадая в организм, начинают активно размножаться и уничтожать патогенную флору, т.к. уже говорилось выше, они обладают большей жизнеспособностью. Таким образом, с помощью штаммов элитных микроорганизмов, можно поддерживать макро организм в здоровье без антибиотиков и в гармонии с природой, т. к. сами по себе, находясь в организме, данные штаммы приносят только пользу и никакого вреда.

Они лучше, чем антибиотики ещё и потому, что:

ответ микромира на введение в деловую практику суперантибиотиков очевиден и следует из уже имеющегося в распоряжении ученых экспериментального материала — рождение супермикроба.

Микробы удивительно совершенные саморазвивающиеся и самообучающиеся биологические машины, способные запоминать в генетической памяти созданные ими механизмы защиты от губительного для них воздействия антибиотиков и передавать информацию потомкам.

Бактерии представляют собой своего рода «биореактор», в котором производятся ферменты, аминокислоты, витамины и бактериоцины, которые также как и антибиотики нейтрализуют болезнетворные микроорганизмы.

Однако при этом не возникает ни привыкания к ним, ни побочных действий, типичных при применении химических антибиотиков. Наоборот, они способны, очистить стенки кишечника, повысить их проницаемость для необходимых питательных веществ, восстановить биологический баланс кишечной микрофлоры и стимулировать всю иммунную систему

Ученые воспользовались естественным для природы путем поддержания здоровья макро организма, а именно — из природной среды выделили бактерии — сапрофиты, обладающие свойством подавлять рост и развитие патогенной микрофлоры, в том числе и в желудочно-кишечном тракте теплокровных.

Миллионы лет эволюции живого на планете создали столь замечательные и совершенные механизмы подавления патогенной микрофлоры непатогенной, что сомневаться в успехе такого подхода не приходится.

Непатогенная микрофлора в конкурентной борьбе побеждает в бесспорном большинстве случаев и, если бы это было не так — нас с вами не было бы сегодня на нашей планете.

На основании вышеизложенного, учёные, производящие удобрения и фунгициды для применения в сельском хозяйстве, тоже постарались перейти с химического на биологический взгляд.

И результаты не замедлили себя проявить! Выяснилось, что те же самые bacillus subtilis успешно борются аж с семьюдесятью разновидностей патогенных представителей, вызывающих такие заболевания садово-огородных культур, как бактериальный рак, фузариозное увядание, корневая и прикорневая гниль и др., ранее считавшиеся неизлечимыми болезнями растений, с которыми не мог справиться НИ ОДИН ФУНГИЦИД!

Кроме того, эти бактерии оказывают явно положительное влияние на вегетацию растения: сокращается срок налива и созревания плодов, увеличиваются полезные качества плодов, снижается содержание в них нитратов и др.

токсичных веществ, а главное — значительно уменьшается потребность в минеральных удобрениях!

Препараты, содержащие штаммы элитных бактерий, уже занимают первые места на российских и международных выставках, они завоёвывают медали за эффективность и экологичность. Уже начали их активное использование мелкие и крупные сельхозпроизводители, а фунгициды и антибиотики постепенно уходят в прошлое.

Подукция компании «Био-Бан» это препараты «Флора-С» и «Фитоп-Флора-С» предлагает сухие торфо-гуминовые удобрения, содержащие концентрированные гуминовые кислоты (а насыщенный гумус — залог отличного урожая) и штамм бактерий «bacillus subtilis» для борьбы с болезнями. Благодаря этим препаратам, можно в короткие сроки восстановить истощённую землю, увеличить урожайность земли, защитить свой урожай от болезней, а главное, возможно получать отличные урожаи в зонах рискового земледелия!

Я считаю, приведённых аргументов достаточно, что бы оценить преимущества пробиотиков и понять, почему же учёные утверждают, что двадцатый век — век антибиотиков, а двадцать первый — век пробиотиков!

Подобные документы

    Селекция микроорганизмов

    Понятие и значение селекции как науки о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов.

    Оценка роли и значения микроорганизмов в биосфере, и особенности их использования. Формы молочнокислых бактерий.

    презентация , добавлен 17.03.2015

    Биология животных

    Значение паукообразных и насекомых в медицине и сельском хозяйстве, борьба с вредителями. Критерии разделения позвоночных на анамнии и амниоты. Цикл жизни малярийного плазмодия.

    контрольная работа , добавлен 12.05.2009

    Генетически модифицированные организмы. Принципы получения, применение

    Оснвные способы получения генетически модифицированных растений и животных. Трансгенные микроорганизмы в медицине, химической промышленности, сельском хозяйстве.

    Неблагоприятные эффекты генно-инженерных организмов: токсичность, аллергия, онкология.

    курсовая работа , добавлен 11.11.2014

    Методы селекции животных и микроорганизмов

    Отличия животных от растений.

    Особенности отбора животных для селекции. Что такое гибридизация, ее классификация. Современные разновидности селекции животных. Сферы использования микроорганизмов, их полезные свойства, методы и особенности селекции.

    презентация , добавлен 26.05.2010

    Классификация микроорганизмов. Основы морфологии бактерий

    Изучение предмета, основных задач и истории развития медицинской микробиологии.

    Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.

    лекция , добавлен 12.10.2013

    Характеристика микроорганизмов молочнокислых, бифидобактерий и пропионовокислых бактерий, используемых при производстве биомороженого

    Пробиотики как непатогенные для человека бактерии, обладающие антагонистической активностью в отношении патогенных микроорганизмов.

    Знакомство с особенностями пробиотических лактобацилл. Анализ кисломолочных продуктов с пробиотическими свойствами.

    реферат , добавлен 17.04.2017

    Современное учение о происхождении микроорганизмов

    Гипотезы о зарождении жизни на Земле.

    Изучение биохимической деятельности микроорганизмов, их роли в природе, жизни человека и животных в работах Л. Пастера. Генетические исследования бактерий и вирусов, их фенотипическая и генотипическая изменчивость.

    реферат , добавлен 26.12.2013

    Совершенствование потребительских свойств пробиотических препаратов

    Влияние пробиотиков на здоровье человека.

    Иммуностимулирующие, антимутагеные свойства пропионовокислых бактерий. Влияние йода на биохимические свойства бактерий-пробиотиков. Качественная характеристика йодированных препаратов, биохимические показатели.

    статья , добавлен 24.08.2013

    Биоинженерия – использование микроорганизмов, вирусов, трансгенных растений и животных в промышленном синтезе

    Производство продуктов микробного синтеза первой и второй фазы, аминокислот, органических кислот, витаминов.

    Крупномасштабное производство антибиотиков. Производство спиртов и полиолов. Основные типы биопроцессов. Метаболическая инженерия растений.

    курсовая работа , добавлен 22.12.2013

    Использование полезных микроорганизмов

    Роль микроорганизмов в природе и сельском хозяйстве.

    контрольная работа , добавлен 27.09.2009

МИКРОБИОЛОГИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ, производство какого-либо продукта с помощью микроорганизмов. Осуществляемый микроорганизмами процесс называют ферментацией; емкость, в которой он протекает, называется ферментером (или биореактором).

Процессы, протекающие при участии бактерий, дрожжей и плесневых грибов, человек применял сотни лет для получения пищевых продуктов и напитков, обработки текстиля и кожи, но участие в этих процессах микроорганизмов было четко показано только в середине 19 в.

В 20 в. промышленность использовала все разнообразие замечательных биосинтетических способностей микроорганизмов, и теперь ферментация занимает центральное место в биотехнологии. С ее помощью получают разнообразные химикалии высокой степени чистоты и лекарственные препараты, изготавливают пиво, вино, ферментированные пищевые продукты.

Во всех случаях процесс ферментации разделяется на шесть основных этапов.

Создание среды. Прежде всего необходимо выбрать соответствующую культуральную среду. Микроорганизмы для своего роста нуждаются в органических источниках углерода, подходящем источнике азота и различных минеральных веществах. При производстве алкогольных напитков в среде должны присутствовать осоложенный ячмень, выжимки из фруктов или ягод.

Например, пиво обычно делают из солодового сусла, а вино - из виноградного сока. Помимо воды и, возможно, некоторых добавок эти экстракты и составляют ростовую среду.

Среды для получения химических веществ и лекарственных препаратов намного сложнее. Чаще всего в качестве источника углерода используют сахара и другие углеводы, но нередко масла и жиры, а иногда углеводороды.

Источником азота обычно служат аммиак и соли аммония, а также различные продукты растительного или животного происхождения: соевая мука, соевые бобы, мука из семян хлопчатника, мука из арахиса, побочные продукты производства кукурузного крахмала, отходы скотобоен, рыбная мука, дрожжевой экстракт. Составление и оптимизация ростовой среды являются весьма сложным процессом, а рецепты промышленных сред - ревниво оберегаемым секретом.

Стерилизация. Среду необходимо стерилизовать, чтобы уничтожить все загрязняющие микроорганизмы. Сам ферментер и вспомогательное оборудование тоже стерилизуют. Существует два способа стерилизации: прямая инжекция перегретого пара и нагревание с помощью теплообменника.

Желаемая степень стерильности зависит от характера процесса ферментации.

Основные группы микроорганизмов, используемых в пищевой промышленности

Она должна быть максимальной при получении лекарственных препаратов и химических веществ. Требования же к стерильности при производстве алкогольных напитков менее строгие.

О таких процессах ферментации говорят как о «защищенных», поскольку условия, которые создаются в среде, таковы, что в них могут расти только определенные микроорганизмы. Например, при производстве пива ростовую среду просто кипятят, а не стерилизуют; ферментер также используют чистым, но не стерильным.

Получение культуры. Прежде чем начать процесс ферментации, необходимо получить чистую высокопродуктивную культуру. Чистые культуры микроорганизмов хранят в очень небольших объемах и в условиях, обеспечивающих ее жизнеспособность и продуктивность; обычно это достигается хранением при низкой температуре.

Ферментер может вмещать несколько сотен тысяч литров культуральной среды, и процесс начинают, вводя в нее культуру (инокулят), составляющей 1-10% объема, в котором будет идти ферментация. Таким образом, исходную культуру следует поэтапно (с пересеваниями) растить до достижения уровня микробной биомассы, достаточного для протекания микробиологического процесса с требуемой продуктивностью.

Совершенно необходимо все это время поддерживать чистоту культуры, не допуская ее заражения посторонними микроорганизмами.

Сохранение асептических условий возможно лишь при тщательном микробиологическом и химико-технологическом контроле.

Рост в промышленном ферментере (биореакторе). Промышленные микроорганизмы должны расти в ферментере при оптимальных для образования требуемого продукта условиях.

Эти условия строго контролируют, следя за тем, чтобы они обеспечивали рост микроорганизмов и синтез продукта. Конструкция ферментера должна позволять регулировать условия роста - постоянную температуру, pH (кислотность или щелочность) и концентрацию растворенного в среде кислорода.

Обычный ферментер представляет собой закрытый цилиндрический резервуар, в котором механически перемешиваются среда и микроорганизмы.

Через среду прокачивают воздух, иногда насыщенный кислородом. Температура регулируется с помощью воды или пара, пропускаемых по трубкам теплообменника. Такой ферментер с перемешиванием используется в тех случаях, когда ферментативный процесс требует много кислорода. Некоторые продукты, напротив, образуются в бескислородных условиях, и в этих случаях используются ферментеры другой конструкции. Так, пиво варят при очень низких концентрациях растворенного кислорода, и содержимое биореактора не аэрируется и не перемешивается.

Некоторые пивовары до сих пор традиционно используют открытые емкости, но в большинстве случаев процесс идет в закрытых неаэрируемых цилиндрических емкостях, сужающихся книзу, что способствует оседанию дрожжей.

В основе получения уксуса лежит окисление спирта до уксусной кислоты бактериями

Acetobacter . Процесс ферментации протекает в емкостях, называемых ацетаторами, при интенсивной аэрации. Воздух и среда засасываются вращающейся мешалкой и поступают на стенки ферментера.

Выделение и очистка продуктов. По завершении ферментации в бульоне присутствуют микроорганизмы, неиспользованные питательные компоненты среды, различные продукты жизнедеятельности микроорганизмов и тот продукт, который желали получить в промышленном масштабе. Поэтому данный продукт очищают от других составляющих бульона.

При получении алкогольных напитков (вина и пива) достаточно просто отделить дрожжи фильтрованием и довести до кондиции фильтрат. Однако индивидуальные химические вещества, получаемые путем ферментации, экстрагируют из сложного по составу бульона.

Хотя промышленные микроорганизмы специально отбираются по своим генетическим свойствам так, чтобы выход желаемого продукта их метаболизма был максимален (в биологическом смысле), концентрация его все же мала по сравнению с той, которая достигается при производстве на основе химического синтеза.

Поэтому приходится прибегать к сложным методам выделения - экстрагированию растворителем, хроматографии и ультрафильтрации. Переработка и ликвидация отходов ферментации. При любых промышленных микробиологических процессах образуются отходы: бульон (жидкость, оставшаяся после экстракции продукта производства); клетки использованных микроорганизмов; грязная вода, которой промывали установку; вода, применявшаяся для охлаждения; вода, содержащая в следовых количествах органические растворители, кислоты и щелочи.

Жидкие отходы содержат много органических соединений; если их сбрасывать в реки, они будут стимулировать интенсивный рост естественной микробной флоры, что приведет к обеднению речных вод кислородом и созданию анаэробных условий. Поэтому отходы перед удалением подвергают биологической обработке, чтобы уменьшить содержание органического углерода. Промышленные микробиологические процессы можно разбить на 5 основных групп: 1) выращивание микробной биомассы; 2) получение продуктов метаболизма микроорганизмов; 3) получение ферментов микробного происхождения; 4) получение рекомбинантных продуктов; 5) биотрансформация веществ.

Микробная биомасса. Микробные клетки сами по себе могут служить конечным продуктом производственного процесса. В промышленном масштабе получают два основных типа микроорганизмов: дрожжи, необходимые для хлебопечения, и одноклеточные микроорганизмы, используемые как источник белков, которые можно добавлять в пищу человека и животных.

Пекарские дрожжи выращивали в больших количествах с начала 20 в. и использовали в качестве пищевого продукта в Германии во время Первой мировой войны.

Однако технология производства микробной биомассы как источника пищевых белков была разработана только в начале 1960-х годов. Ряд европейских компаний обратили внимание на возможность выращивания микробов на таком субстрате, как углеводороды, для получения т.н.

белка одноклеточных организмов (БОО). Технологическим триумфом было получение продукта, добавляемого в корм скоту и состоящего из высушенной микробной биомассы, выросшей на метаноле.

Процесс шел в непрерывном режиме в ферментере с рабочим объемом 1,5 млн. л

Однако в связи с ростом цен на нефть и продукты ее переработки этот проект стал экономически невыгодным, уступив место производству соевой и рыбной муки. К концу 80-х годов заводы по получению БОО были демонтированы, что положило конец бурному, но короткому периоду развития этой отрасли микробиологической промышленности. Более перспективным оказался другой процесс - получение грибной биомассы и грибного белка микопротеина с использованием в качестве субстрата углеводов.

Продукты метаболизма. После внесения культуры в питательную среду наблюдается лаг-фаза, когда видимого роста микроорганизмов не происходит; этот период можно рассматривать как время адаптации. Затем скорость роста постепенно увеличивается, достигая постоянной, максимальной для данных условий величины; такой период максимального роста называется экспоненциальной, или логарифмической, фазой.

Постепенно рост замедляется, и наступает т.н. стационарная фаза. Далее число жизнеспособных клеток уменьшается, и рост останавливается.

Следуя описанной выше кинетике, можно проследить за образованием метаболитов на разных этапах.

В логарифмической фазе образуются продукты, жизненно важные для роста микроорганизмов: аминокислоты, нуклеотиды, белки, нуклеиновые кислоты, углеводы и т.д. Их называют первичными метаболитами.

Многие первичные метаболиты представляют значительную ценность. Так, глутаминовая кислота (точнее, ее натриевая соль) входит в состав многих пищевых продуктов; лизин используется как пищевая добавка; фенилаланин является предшественником заменителя сахара аспартама.

Первичные метаболиты синтезируются природными микроорганизмами в количествах, необходимых лишь для удовлетворения их потребностей. Поэтому задача промышленных микробиологов состоит в создании мутантных форм микроорганизмов - сверхпродуцентов соответствующих веществ.

В этой области достигнуты значительные успехи: например, удалось получить микроорганизмы, которые синтезируют аминокислоты вплоть до концентрации 100 г/л (для сравнения - организмы дикого типа накапливают аминокислоты в количествах, исчисляемых миллиграммами).

В фазе замедления роста и в стационарной фазе некоторые микроорганизмы синтезируют вещества, не образующиеся в логарифмической фазе и не играющие явной роли в метаболизме. Эти вещества называют вторичными метаболитами. Их синтезируют не все микроорганизмы, а в основном нитчатые бактерии, грибы и спорообразующие бактерии. Таким образом, продуценты первичных и вторичных метаболитов относятся к разным таксономическим группам. Если вопрос о физиологической роли вторичных метаболитов в клетках-продуцентах был предметом серьезных дискуссий, то их промышленное получение представляет несомненный интерес, так как эти метаболиты являются биологически активными веществами: одни из них обладают антимикробной активностью, другие являются специфическими ингибиторами ферментов, третьи - ростовыми факторами, многие обладают фармакологической активностью.

Получение такого рода веществ послужило основой для создания целого ряда отраслей микробиологической промышленности. Первым в этом ряду стало производство пенициллина; микробиологический способ получения пенициллина был разработан в 1940-х годах и заложил фундамент современной промышленной биотехнологии.

Фармацевтическая промышленность разработала сверхсложные методы скрининга (массовой проверки) микроорганизмов на способность продуцировать ценные вторичные метаболиты.

Вначале целью скрининга было получение новых антибиотиков, но вскоре обнаружилось, что микроорганизмы синтезируют и другие фармакологически активные вещества.

В течение 1980-х годов было налажено производство четырех очень важных вторичных метаболитов. Это были: циклоспорин - иммунодепрессант, используемый в качестве средства, предотвращающего отторжение имплантированных органов; имипенем (одна из модификаций карбапенема) - вещество с самым широким спектром антимикробного действия из всех известных антибиотиков; ловастатин - препарат, снижающий уровень холестерина в крови; ивермектин - антигельминтное средство, используемое в медицине для лечения онхоцеркоза, или «речной слепоты», а также в ветеринарии.

Ферменты микробного происхождения. В промышленных масштабах ферменты получают из растений, животных и микроорганизмов. Использование последних имеет то преимущество, что позволяет производить ферменты в огромных количествах с помощью стандартных методик ферментации.

Кроме того, повысить продуктивность микроорганизмов несравненно легче, чем растений или животных, а применение технологии рекомбинантных ДНК позволяет синтезировать животные ферменты в клетках микроорганизмов.

Ферменты, полученные таким путем, используются главным образом в пищевой промышленности и смежных областях. Синтез ферментов в клетках контролируется генетически, и поэтому имеющиеся промышленные микроорганизмы-продуценты были получены в результате направленного изменения генетики микроорганизмов дикого типа.

Рекомбинантные продукты. Технология рекомбинантных ДНК, более известная под названием «генная инженерия», позволяет включать гены высших организмов в геном бактерий. В результате бактерии приобретают способность синтезировать «чужеродные» (рекомбинантные) продукты - соединения, которые прежде могли синтезировать только высшие организмы.

На этой основе было создано множество новых биотехнологических процессов для производства человеческих или животных белков, ранее недоступных или применявшихся с большим риском для здоровья.

Сам термин «биотехнология» получил распространение в 1970-х годах в связи с разработкой способов производства рекомбинантных продуктов. Однако это понятие гораздо шире и включает любой промышленный метод, основанный на использовании живых организмов и биологических процессов.

Первым рекомбинантным белком, полученным в промышленных масштабах, был человеческий гормон роста. Для лечения гемофилии используют один из белков системы свертывания крови, а именно фактор

VIII. До того как были разработаны методы получения этого белка с помощью генной инженерии, его выделяли из крови человека; применение такого препарата было сопряжено с риском заражения вирусом иммунодефицита человека (ВИЧ).

Долгое время сахарный диабет успешно лечили с помощью инсулина животных. Однако ученые полагали, что рекомбинантный продукт будет создавать меньше иммунологических проблем, если его удастся получать в чистом виде, без примесей других пептидов, вырабатываемых поджелудочной железой.

Кроме того, ожидалось, что число больных диабетом будет со временем увеличиваться в связи с такими факторами, как изменения в характере питания, улучшение медицинской помощи беременным, страдающим диабетом (и как следствие - повышение частоты генетической предрасположенности к диабету), и, наконец, ожидаемое увеличение продолжительности жизни больных диабетом.

Первый рекомбинантный инсулин поступил в продажу в 1982, а к концу 1980-х годов он практически вытеснил инсулин животных.

Многие другие белки синтезируются в организме человека в очень небольших количествах, и единственный способ получать их в масштабах, достаточных для использования в клинике, - технология рекомбинантных ДНК. К таким белкам относятся интерферон и эритропоэтин.

Эритропоэтин совместно с миелоидным колониестимулирующим фактором регулирует процесс образования клеток крови у человека. Эритропоэтин используется для лечения анемии, связанной с почечной недостаточностью, и может найти применение как средство, способствующее повышению уровня тромбоцитов, при химиотерапии раковых заболеваний.

Биотрансформация веществ. Микроорганизмы можно использовать для превращения тех или иных соединений в структурно сходные, но более ценные вещества. Поскольку микроорганизмы могут проявлять свое каталитическое действие в отношении лишь каких-то определенных веществ, протекающие при их участии процессы более специфичны, чем чисто химические. Наиболее известный процесс биотрансформации - получение уксуса в результате превращения этанола в уксусную кислоту.

Но среди продуктов, образующихся при биотрансформации, есть и такие высокоценные соединения, как стероидные гормоны, антибиотики, простагландины.См. также ГЕННАЯ ИНЖЕНЕРИЯ.Промышленная микробиология и успехи генетической инженерии (специальный выпуск журнала «Scientific American»).

М., 1984
Биотехнология. Принципы и применение . М., 1988

Производство Использование микроорганизмов человеком.

Микроорганизмы широко используются в пищевой промышленности, домашнем хозяйстве, микробиологической промышленности для получения аминокислот, ферментов, органических кислот, витаминов и др.

К классическим микробиологическим производствам относится виноделие, пивоварение, приготовление хлеба, молочнокислых продуктов и пищевого уксуса. К примеру, виноделие, пивоварение и производство дрожжевого теста͵ невозможны без использования дрожжей, широко распространенных в природе.

История индустриального производства дрожжей началась в Голландии, где в 1870 ᴦ. была основана первая фабрика, выпускавшая дрожжи. Основным видом продукции стали прессованные дрожжи влажностью около 70 %, которые могли храниться всœего несколько недель.

Длительное хранение было невозможно, так как клетки прессованных дрожжей оставались живыми, сохраняли свою активность, что и приводило к их автолизу и гибели. Одним из способов промышленного консервирования дрожжей стало высушивание. В сухих дрожжах при низкой влажности дрожжевая клетка находится в анабиотическом состоянии и может сохраняться длительное время.

Первые сухие дрожжи появились в 1945 ᴦ. В 1972 ᴦ. появилось второе поколение сухих дрожжей, так называемые инстантные дрожжи.

Использование микроорганизмов в пищевой промышленности

С середины 1990-х годов появилось третье поколение сухих дрожжей: пекарские дрожжи Saccharomyces cerevisiae, которые объединили достоинства инстантных дрожжей с высококонцентрированным комплексом специализированных хлебопекарных ферментов в одном продукте.

Эти дрожжи позволяют не только улучшить качество хлеба, но и активно противостоять процессу черствения.

Пекарские дрожжи Saccharomyces cerevisiae используются и в производстве этилового спирта.

Виноделие использует множество разных рас дрожжей, чтобы получить уникальную марку вина с только ему присущими качествами.

Молочнокислые бактерии принимают участие в приготовлении таких пищевых продуктов, как квашеная капуста͵ соленые огурцы, маринованные маслины и множество других маринованных продуктов.

Молочнокислые бактерии преобразуют сахар в молочную кислоту, которая предохраняет пищевые продукты от гнилостных бактерий.

С помощью молочнокислых бактерий готовят большой ассортимент молочнокислых продуктов, творог, сыр.

При этом многие микроорганизмы играют отрицательную роль в жизни человека, являясь возбудителями болезней человека, животных и растений; они могут вызывать порчу пищевых продуктов, разрушение различных материалов и т.п.

Для противоборства с такими микроорганизмами были открыты антибиотики - пенициллин, стрептомицин, грамицидин и др., которые являются продуктами метаболизма грибов, бактерий и актиномицетов.

Микроорганизмы дают человеку необходимые ферменты.

Так, амилазу используют на предприятиях пищевой, текстильной, бумажной промышленности. Протеаза вызывает разложение белков в различных материалах. На Востоке протеазу из грибов применяли уже несколько столетий назад для приготовления соевого соуса.

Сегодня ее используют при производстве моющих средств. При консервировании фруктовых соков применяют такой фермент, как пектиназа.

Микроорганизмы используют для очистки сточных вод, переработки отходов пищевой промышленности. При анаэробном разложении органического вещества отходов образуется биогаз.

В последние годы появились новые производства.

Из грибов получают каротиноиды и стероиды.

Бактерии синтезируют многие аминокислоты, нуклеотиды и другие реактивы для биохимических исследований.

Микробиология является быстроразвивающейся наукой, достижения которой во многом связаны с развитием физики, химии, биохимии, молекулярной биологии и др.

Для успешного изучения микробиологии требуется знание перечисленных наук.

В настоящем курсе в основном рассматривается микробиология пищевых продуктов.

Множество микроорганизмов живет на поверхности тела, в кишечнике человека и животных, на растениях, на пищевых продуктах и на всœех предметах вокруг нас. Микроорганизмы потребляют самую разнообразную пищу, чрезвычайно легко приспосабливаются к изменяющимся условиям жизни: теплу, холоду, недостатку влаги и т.

п. Οʜᴎ очень быстро размножаются. Без знания микробиологии нельзя грамотно и эффективно управлять биотехнологическими процессами, сохранить высокое качество пищевых продуктов на всœех этапах его производства и предотвратить потребление продуктов, содержащих возбудителœей пищевых заболеваний и отравлений.

Следует особо подчеркнуть, что микробиологические исследования пищевых продуктов, не только с точки зрения технологических особенностей, но и, что не менее важно, с точки зрения их санитарно-микробиологической безопасности, являются самым сложным объектом санитарной микробиологии.

Это объясняется не только разнообразием и обилием микрофлоры в продуктах питания, но и использованием микроорганизмов в производстве многих из них.

В этой связи, при микробиологическом анализе качества и безопасности продуктов питания следует различать две группы микроорганизмов:

– специфическая микрофлора;

– неспецифическая микрофлора.

Специфическая — ϶ᴛᴏ культурные расы микроорганизмов, которые используются для приготовления того или иного продукта и являются обязательным звеном в технологии его производства.

Такая микрофлора используется в технологии получения вина, пива, хлеба, всœех кисломолочных продуктов.

Неспецифическая — ϶ᴛᴏ микроорганизмы, которые попадают в пищевые продукты из окружающей среды, загрязняя их.

Среди этой группы микроорганизмов различают сапрофитные, патогенные и условно-патогенные, а также микроорганизмы, вызывающие порчу продуктов.

Степень загрязнения зависит от множества факторов, к которым следует отнести правильность заготовки сырья, его хранения и переработки, соблюдение технологических и санитарных режимов производства продуктов, их хранения и транспортировки.